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Abstract. A refined asymptotic result is given for the integrated level density of the coupled 
quartic oscillators with potential V ( q ,  , q2) = aqtq:. The method relies on an adiabatic 
separation in the heat kemel’s spatial dependence out in the narrow channels of the 
equipotential surface. 

Over the past few years, the system of coupled quartic oscillators with Hamiltonian 

H=-tnq:q: P2 
2m 

has received some atttention both for its dynamical properties-it is nearly chaotic 
[ l l ] - and  its relevance to certain simplified field theories [2]. One of the interesting 
features is that its energy surface in phase space has four narrow, hyperbolic-shaped 
channels with infinite volume, aligned along either the q,  or q2 axes, yet the quantum 
version is proven to have a purely discrete spectrum [3]. The usual relationship between 
the density of states and the phase space volume cannot apply. Here we shall show 
how to refine Simon’s [4] asymptotic result for the smoothed integrated level density. 

The problem is quite like that encountered in the hyperbolic quantum billiards 
recently discussed by Steiner and Trillenberg [5]. They were able to calculate improved 
asymptotic expansions for the level densities (or in the time domain, traces of the heat 
kernels) with the help of results by Van den Berg [a] for ‘horn-shaped regions’. His 
results are applicable only to billiard problems, but the essential idea needed is the 
same. Namely, far out in the narrow channel regions there exists an adiabatic separation 
in the degrees of freedom along and perpendicular to the axes of the channels. This 
method adapts easily to the quantum version of (1) and, strictly speaking, requires 
some additional mathematical justification to be rigorous; we shall not give that here 
in order to allow intuitive presentation. 

Consider the quantum Hamiltonian 

whose classical analogue is given in the first equation. It is convenient here to allow 
(4,. q2) to serve a dual role, one as the canonical position variables in classical phase 
space and the other as the variables in the configuration space representation of the 
quantum system. The trace of its associated heat kernel is denoted Z(t) and as usual 

m 

Z(f)=Tr[exp(-ffi)]= I_.. dqldq2K(ql ,  q2; O = l o m d E  e-‘€p(E) (3) 
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where K ( q , ,  q2; 1 )  denotes the diagonal part of the kernel. The last form is included 
in order to indicate that Z(I) and the density of states, p ( E ) ,  form a Laplace transform 
pair. The standard, lowest-order semiclassic21 approximation, good for small I, is to 
substitute the classical H for the quantum H and to replace the trace by an integral 
over the phase space volume normalized by (Zrh)-*. The implication for K ( q , ,  q2; 1 )  
is 

as long as neither lqll nor Iq21 becomes too large. More precisely, it is the products 
1qJf and 1q21f which must remain small in the channels for (4) to be validt. Therefore, 
it is convenient to break the ( q , ,  qz) plane into two subdomains for integration. The 
first is a square centred at (0,O) which excludes the narrow channels. In IJO, its 
contribution to the trace, ZJf), is found to he 

where y = 0.5772 . . . is Euler's constant. The extent of the square, q, is understood to 
be as large as is consistent with the product qf  tending to zero and only the leading 
order in q has been kept in the evaluation of the integral (which can be done in a 
straightforward fashion). 

For the (diagonal part of) heat kernel in the large 1q,1 channels, the adiabatic 
approximation is K ( q , ,  q2; f ) -  K,.(q,; I )  * K, , (q2;  t )  where is the free particle 
kernel ( - ( m / 2 r h 2 f ) ' / 2 )  and K,, is the exact harmonic oscillator kernel whose only 
ql dependence lies in the oscillator frequency (force constant). The four channels are 
identical and exponentially well isolated from each other, as can be deduced from the 
final form of (4). Therefore, we can cover the second subdomain by multiplying a 
single q,-channel contribution by four and extending the q2 integration limits to +m. 
Then it is simplest to go after the expression for the integrated K q ,  directly because 
the trace of the harmonic oscillator kernel is a well known exponentiated spectral sum: 

The specific constants in the argument of the exponential are those appropriate for an 
oscillator frequency of & q , .  In ILO, the remaining contribution to the trace, & ( I ) ,  
is then 

t One way to view this restriction is based on the ket (4,. y2; r) = exp(-&y,. q2; 0). The time must be 
rhon enough that the kef has not had the opporlunity to 'discover' or reflect off the narrow width of the 
channel. See also the argument of the hyperbolic sine function of (6). 
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again to leading order in q. Summing the two contributions Z J i )  and Zq(f) gives 

with A = ii4a/16m’. Due to the homogeneous nature of the potential, it was possible 
to know in advance that the various parameters for mass m, h, and strength of the 
interaction a would combine to form just one scale constant and also that it would 
appear in the combination A f 3  as (8) confirms. In the same vein with this check is the 
disappearance of a q dependence which indicates a proper matching of the heat kernel 
approximations between the two subdomains. Some evidence suggests that the next 
non-vanishing contribution is O(f”’1n f)t. 

The invzrse Laplace transform of Z ( f ) / f  leads io an expression for the asymptotic 
smoothed integrated level density denoted by N ( 8 )  ( = I d %  ~(8)) 

8 3 / 2  

(9) 

where ‘3 = E / h “ 3  is the unitless reduced energy. The log term was fiat given by Simon 
[4]. From a purely practical viewpoint, the log term by itself is of limited value since 
a scale change of 8 introduces an arbitrarily important g3“ term. With the now derived 
g3’2 term, the behaviour of the exact quantum integrated level density is perfectly 
followed right from the ground state; see figure 1. This method can be extended with 
little effort to one capable of generating the expansion to arbitrary order. 

We gratefully acknowledge discussions with C Schmit, 0 Bohigas and D Ullmo. This 
work was supported in part by the National Science Foundation under grant no 
CHE-8507138. Computations were performed at the lnstitut de Physique Nucleaire, 
Orsay and the University of Washington. 

1 N(8)-- P 2 i n  %+--(~y+Sin2-4)  
277 3 F  

8 

Figure 1. The comparison of the exact quantum integrated density of states (the ‘staircase’ 
function, N(8j) to the asymptotic mean number expected for the lowest 50 eigenvalues. 

_I 

t A preliminary calculation based on an exlension suggests the next term is 3m In(A1’)/2&, 
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